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The validity of the concept of “hard-sphere-like” particles for mixtures of colloids is questioned from a
theoretical point of view. This concerns the class of pseudobinary mixtures in which the nonsteric interactions
between the colloids are “residual”(with very small range and moderate strength). It is shown that contrary to
common expectation, such interactions may have unexpected consequences on the theoretical phase diagram.
The distinction between this situation and true solute-solvent mixtures is emphasized.
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I. INTRODUCTION

The concept of “hard-sphere-like” colloids refers to mac-
roparticles that are thought of as interacting mostly through a
harsh repulsion associated with the particle cores. In recent
years, it has been applied to the analysis of numerous
pseudobinary colloidal mixtures, that is, suspensions involv-
ing two supramolecular species in a suspending medium.
The underlying criterion assumes a hard-core diameter that is
much greater, for both species, than any other characteristic
length of the suspension(solvent or small ion diameters,
thickness of the colloids surface layer, screening length, etc).
This includes a large number of sterically stabilized mix-
tures, charge stabilized ones with a short screening length,
and some that combine both mechanisms. Typical examples
are mixtures of polymethylmethacrylate(PMMA) and poly-
styrene(PS) spheres, or mixtures of two silica particles with
different sizes. The consensus in the literature(for experi-
ments, see, e.g.,[1–5] and for theory[6,7] and references
therein) is that, aside from those showing clear evidence of
specific interactions(e.g., mixtures containing reverse mi-
celles[8]), such suspensions behave essentially as binary HS
mixtures. The behavior of the latter is governed by a small-
spheres mediated effective interaction between the bigger
spheres. Its most salient feature is a deep well at short sepa-
ration that is associated with an increase of the free volume
for the small particles, when the exclusion spheres of the big
ones overlap. This is a special case of “depletion effects” that
refer to situations in which the solvent is expelled from the
inner space between sufficiently close macroparticles[9,10].
It will thus be referred to here as the HS depletion interac-
tion. The special case of mixtures of colloids and ideal poly-
mers and the related work based on the Asakura-Osawa
model [9] (see Ref.[11] for a recent review) will not be
discussed here. In mixtures of “hard-sphere-like” colloids,
one expects a HS depletion effect associated with the small
colloid effective hard-core diameterDs. As Ds is much
greater than the lengths associated with the other interactions
felt by the big solutes, the HS depletion potential is supposed
in the literature to be the main contribution to the effective
interaction. Accordingly, the phase behavior of “hard-sphere-
like” colloidal mixtures should be close—at least
qualitatively—to that of pure HS mixtures. This conjecture is
also based on the experimental observations that when the

suspension involves only a single species of the same colloi-
dal particles, it behaves nearly as a one-component HS sys-
tem (with the same equation of state, critical values at melt-
ing, and crystallization) [3,11–13].

The purpose of this paper is precisely to question this
“premise” in the specific case of the asymmetric mixture.
First, it is generally difficult to anticipate in this case the
complex interplay of non-HS contributions(see Refs.
[14–17] for a discussion of true molecular solvent/colloid
binary mixtures). Second, the fundamental features of the
phase diagram of pure HS mixtures are critically dependent
on the specific characteristics of the HS depletion well. In
this work, we demonstrate that “small” non-HS interactions
may have more consequences on the phase diagram than
what is believed from the present consensus. The paper is
thus organized as follows. In Sec. II, the method used to
compute the phase diagram is specified. In Sec. III, we
present our results for model interactions corresponding to
specific situations that are discussed. These results are inter-
preted in Sec. IV. Section V is the conclusion.

II. METHODS

The model considered here is a highly asymmetric binary
mixture of “small” and “big” particles(hereafter referred to
by the indexes “s” and “b” ). The corresponding physical sys-
tems will be specified in the next section. In all the situations
considered in this paper, the fluid of small particles is as-
sumed to remain in a single phase, irrespective of the big
particles densityrb. The big particles phase behavior was
thus determined in the effective one-component fluid
(EOCF) representation. We briefly recall the main points of
this well-known method. The convenient variables in this
representation are those of the semigrand ensemble
sms;Nb,V,Td, wherems is the chemical potential of the small
particles,Nb is the number of big ones in the volumeV, and
T is the temperature. The free energyF of the mixture is

bF = − lnSTrb,NbFo
Ns

`

Trs,Ns
hexpf− bsH − msNsdgjGD .

s1d

The total potential energyH is supposed to be pair additive:
H=Hbb+Hsb+Hss with Hij the total interaction potential be-
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tween speciesi and j . b=1/kBT (with kB Boltzmann’s con-
stant) and the symbol Tra,Na

designates the integral over the
spatial coordiantes of theNa particles of speciesa

Tra,Na
fXg =

1

Na ! La
3NaE Sp

i=1

Na

driDXsr1,̄ ,rNad s2d

with La=h/Î2pmakBT. Equation(1) may be written as

bF = − lnfTrb,Nb
exps− bHeffdg, s3d

where

exps− bHeffd = o
Ns=1

`

Trs,Ns
hexpf− bsH − msNsdgj. s4d

F may be interpreted as the free energy of an effective one-
component fluid of big particles interacting through the ef-
fective HamiltonianHeff=Hbb+Hind with

exps− bHindd = o
Ns=1

`

Trs,Ns
hexpf− bsHss+ Hsb− msNsdgj.

s5d

Heff is thus the sum of a direct interactionHbb and an indirect
one,Hind, that is mediated by the fluid of small particles. The
exact computation of theN2-body interaction energyHind is
not feasible. The usual approximation is then to expand Eq.
(5) in terms of the grand potentials for the small particles
without big onesfV0sms,T,Vdg, in the presence of one big
particle fV1sms,T,Vdg, two big particles separated by a dis-
tancer fV2sms,T,V,rdg, etc. Up to the two-body terms, one
gets(see, e.g., Ref.[6])

exps− bHindd = V0sms,T,Vd + Nbv1sms,T,Vd

+ expS− bo
i, j

v2sr ijdD , s6d

wherev1=V1sms,T,Vd−V0sms,T,Vd and

v2sr ijd = V2sms,T,V,r ijd − V2sms,T,V,`d s7d

is the potential of mean force(PMF) between two big par-
ticles at infinite dilution in the bath of small ones. Note that
this pair interaction approximation seems sufficient for the
HS or short-range potentialsuijsrd considered here(see, for
example,[18] and references therein). As we are interested
only in the phase behavior of the big particles, the useful part
H8 of Heff is H8=oi,jfubbsr ijd+v2sr ijdg, whereubb is the big
particle direct interaction. This effective interaction is a func-
tion of ms, T, andV. Equivalently, it may be expressed as a
function ofTand the reduced densityrs

* of the small particles
in the reservoirsrs

* =rsDs
3d. Thus, for a fixed temperatureT,

the theoretical phase diagram can be deduced from the free
energy of the EOCF of big particles in thesrs,rbd plane.

To this end, one first computes the PMF at infinite dilu-
tion. The route based on the grand potential[Eq. (7)] is use-
ful when a practical expression of the free energy is avail-
able, as in density-functional-theory calculations for hard
spheres[19]. An alternative, which is more appropriate to
models with attractive forces[20], is the expression of the

PMF from the pair distribution function of the big particles
at infinite dilution,

gbbsr,rb → 0d = expf− bubbsrd + feffsr,m1dg. s8d

The formal proof of the equivalence of the two routes is
given in Ref.[21], for example. To specify that we actually
used this last route, the PMF is denoted byfeff. Details on
the practical use of Eq.(8) are given in Ref.[20]. We men-
tion here that one needs the pair distribution functions(PDF)
gijsrd for a mixture withrb→0. These were obtained from
the Ornstein-Zernike equations(OZE) with the reference
hypernetted-chain(RHNC) closure. The bridge functions we
used were computed from Rosenfeld’s density-functional
theory [22] in the limit rb→0. The accuracy of this method
has been positively checked against the simulation data of
Refs. [17,23] for situations typical of solvent-colloid mix-
tures. We performed a similar test with interaction param-
eters corresponding to the pseudobinary mixtures considered
in the literature as “HS-like.” The results are satisfying(see
the Appendix) for the purpose of this paper, which is to em-
phasize the qualitative changes with respect to the HS deple-
tion scenario.

The free energy of an EOCF of particles interacting with
feff was computed in thesrs,rbd plane similarly as in Refs.
[15,17]: for the fluid phase, the very accurate RHNC integral
equations [24] were used with the bridge function of
Malijevski and Labik[25] as unique input(see Ref.[26] for
details). The free energy in the solid was computed in the
variational perturbation theory. The accuracy of the hybrid
method was shown in Ref.[15] for the fluid-solid(FS) and
fluid-fluid (FF) transitions, by comparison with the simula-
tion data of Dijkstraet al. [6], and confirmed more recently
by simulations from our group[17] for the FF transition.
Concerning a possible solid-solid(SS) transition between
two solid states with different densities, it was shown in[26]
that the perturbation treatment is suitable to describe a dense
solid near close packing but is more problematic for a
“softer” one with lower density. However, no SS transition
involving such as soft solid will be observed in our results.

III. RESULTS

We begin by directly showing the main result of this
study: in the specific case of pseudobinary mixtures, very
small non-hard-core interactions can have an unexpected im-
pact on the phase diagram. Three different situations are
compared in Fig. 1 for a diameter ratioq=10: Fig. 1(a) is for
a pure hard-spheres mixture. Figures 1(b) and 1(c), relative
to systems with attractions, correspond, respectively, to the
following models.

(1) A HS mixture with a very-short-range Yukawa tail in
the small-big particle interaction:

busb
s1dsr . Dsbd = −

«*

r/Ds
exph− k1sDsb− rdj,

usb
s1dsr , Dsbd = + ` s9d

with Dsb=Dscsq+1d /2. The inverse interaction rangek1
*

=k1Ds is specified in the table, and the contact valueuc
*
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=−2«* / sq+1d is fixed to uc
* =−1.45 in units of kBT sor «*

=8d.
(2) HS macroparticles in a Lennard-Jones(LJ) fluid [17],

busssr . Dsd = 4«LJ
* FSDs

r
D12

− SDs

r
D6G . s10d

The strength of the LJ potential was taken as«LJ
* =0.6 and

the other interaction potentials are a pure HSubb and a

Yukawa usb with uc
* =−1.45 andappropriate rangessee

Table Id.
Before analyzing the results show in Fig. 1, it is useful to

stress first the essential difference between models(1) and
(2): they correspond to widely different attraction ranges.
This is obvious foruss. Now the range ofusb is of the order
of the “solvent” diameter in model(2): k2

−1=0.4Ds. For the
same contact valueuc

* , it is much smaller in model(1):
0.01Dsøk1

−1ø0.025Ds. A more visual illustration of this last
situation is Fig. 2, which shows the attraction range at the
appropriate scale[k1

* =60 in model(1)]. For what concerns
the connection with real systems, models(1) and (2)—
although very simple—may be related to two different
classes of mixtures. Model(2) typically corresponds to a

FIG. 1. Phase diagram of the big particle effective one-
component fluid(EOCF) with q=10. (a) Hard spheres, fluid-solid
transition. (b) Model (1): long dashes,k* =100; short dashes,k*

=60, dots,k* =40. The nearly straight lines observed in the upper
right region correspond to a solid-solid transition.(c) Model (2):
line, fluid-solid transition; dots, fluid-fluid transition. The inset
shows the same lines for a 9% smaller«LJ

* . rs
* is the small particle

reduced density in the reservoir andhb the big particle packing
fraction.

TABLE I. Parameters of the small-big Yukawa potentialsk*

=kDsd. DBsb
s2d=sBsb

s2d−Bsb,HS
s2d d /Bsb,HS

s2d is the change in the second
virial coefficient from hard spheressBsb,HS

s2d d to the Yukawa potential
sBsb

s2dd.

Model k* DBsb
s2d

1 [40, 100] f−3.1% ,−1.3%g
2 2.5 −54.1%

FIG. 2. Extension of the small-big attractive Yukawa tail fork
=60/Ds andk=2.5/Ds at the scale of the small particle diameterDs

(a). The dots and dashes correspond to the separations for which
usb=uc

* /e for k=60/Ds andk=2.5/Ds, respectively.(b) usb versus
sr −Dsbd /Ds for k* =100, 60, 40, and 2.5.
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“true” solute/solvent mixture: colloidal particles of one spe-
cies suspended in a molecular solvent. The choice of an at-
tractive interaction,usb, should be appropriate to sterically
stabilized colloids: the attraction may correspond, for in-
stance, to the van der Waals force between the solvent mol-
ecules and the microscopic objects forming the colloids and
their surface layer. Since it is expected to operate at the scale
Ds of the small (solvent) particles, it falls in the category
described by model(2). This is the situation more often con-
sidered in the papers discussing the non-HS interactions ef-
fect in colloidal suspensions[14–17].

In contrast with this, the interaction range in model(1)
corresponds to those colloidal mixtures that are classified in
the literature as “hard-sphere-like.” They involve two differ-
ently sized colloids(and a molecular solvent) having dimen-
sions much greater than any other characteristic length in the
suspension. As a result, the non-HS part of the intercolloidal
interactions has a range much smaller thanDs, as in model
(1). The values used here may be compared with the estima-
tions found in the experimental literature: recently, the ex-
perimental phase diagram of mixtures of two differently
sized silica particles grafted with stearyl alcohol and sus-
pended in cyclohexane has been investigated[27]. One had
Ds=32 nm andDb=185 nm for the system classified as HS-
like, having a stabilizing layer thickness of less than 2 nm
(the exact value was not specified). Considering then an at-
traction range of, say, 1 nm due, for example, to the surface
layers overlap, the values discussed here cover the range
40 nmøDsø100 nm for the small colloid diameter(and
hence 0.4mmøDbø1 mm for q=10). The ratio between the
attraction range and the particle diameters in model(1) is
thus probably even smaller than in the real system. Another
example is the case of PMMA particles mixed with polysty-
rene studied in Ref.[28]. Here, the screening length charac-
terizing the intercolloidal electrostatic repulsion was esti-
mated to bek−1<3 nm for Ds=83 nm(andDb=1.1 mm) or
k* =27. The interaction range is again greater than in model
(1). This shows that the interaction ranges selected for model
(1) are truly representative of the “small” non-HS interac-
tions observed in real systems.

The importance of the non-HS interactions in models(1)
and (2) may also be assessed by comparing the associated
second virial coefficientsBsb

s2dd to the pure HS situation. For
the Yukawa potential, which is monotonous, the deviation
DBsb

s2d=sBsb
s2d−Bsb,HS

s2d d /Bsb,HS
s2d from hard spheressBsb,HS

s2d d is in-
deed a global measure of the attraction strength. One finds
DBsb

s2d=−1.3–3.1 % with model(1) to be compared to

DBsb
s2d<−54% for model(2). This last situation departs sig-

nificantly from the pure HS case, whereas model(1) is very
close to the HS limit. Note that the small values ofDBsb

s2d

mean that the very short range considered here does not cor-
respond to Baxter’s “sticky” limit [29]. The interaction
strength remains indeed here quite moderate. To emphasize
again the actual smallness ofusb

s1d, we have computed also
DBs2d for the—already very steep—direct interaction esti-
mated in Ref.[12] by the surface force apparatus: we found
DBs2d<3–18 % for spheres of diameter 800–100 nm.

As a final check of the adequacy of model(1) to a HS-like
situation, we also considered the experimental results of

[28]. In this study, the pair potential of PMMA particles
mixed with charge-stabilized PS ones was directly measured
(for another example, see Ref.[30]). At small PS density, the
authors compared the theoretical HS depletion potential to
the experimental values. They observed a deviation at con-
tact, DfsDbd<30%fdepsDbd, although the screening length
of the electrostatic repulsiond was very smallsd<3%Dsd.
We could reproduce this deviation by computing the PMF as
in model(1) but with a repulsive tail having a range fixed to
the experimental value: 1/k1

* =0.03 and a contact valueuc
*

= +2.5. This is certainly not excessive for a repulsive poten-
tial. It leads to a change of the associated second virial co-
efficient DBs2d<2.3%, which is comparable to those found
for model (1).

Finally, we mention also the study in Ref.[31] of the
modification of the effective potential induced by nonaddi-
tivity of the hard-core diameters. The values ofDBsb

s2d in the
table are similar to those obtained with the smaller nonaddi-
tivity, corresponding roughly tod<3–10 %Dsc. In Ref.
[32], the influence of Yukawa heteroattractions with ranges
1/k* =0.05 and 0.1 was also computed at the level of the
effective potential.

This discussion shows that although model(1) is an ide-
alized one, the values of the parameters that we have selected
are indeed representative of “hard-sphere-like” situations, as
observed in real systems. These “residual” interactions are
usually considered as irrelevant in the literature. Therefore
the features of the phase diagram associated with this situa-
tion and illustrated in Fig. 1(b) should constitute a good test
of the validity of the HS mixture as a sensible physical limit.
The main information provided by Fig. 1 appears now more
clearly.

(1) The phase diagram shown in Fig. 1(a), obtained from
the methods described in Sec. II, shows the same features as
those described in the literature[6,15,33]. We summarize
here the main points: the absence of a stable FF transition
and the broad FS coexistence domain that appears at rather
low small particles density: forrs

* ù0.4, the EOCF separates
into a dilute gas in equilibrium with a solid near close pack-
ing.

(2) Before discussing Fig. 1(b) in more detail, we briefly
describe the phase diagram of model(2) [Fig. 1(c)] that was
obtained in Ref.[17]. One observes first a considerable ex-
tension of the stability domain of the fluid phase. Second, for
a suitable choice of the parameters, a significant domain cor-
responds to a stable FF coexistence. It is now well estab-
lished that in this regime, non-HS interactions may lead to a
rich variety of phase behavior landscapes by changing the
magnitude or range of the potentialsuabsrd [see the inset, the
effect of a small change in«LJ

* ].
(3) The phase diagram shown in Fig. 1(b) is, to our

knowledge, the first one computed for nearly HS interac-
tions. This has not been done before precisely because the
residual interaction beyond the hard core is usually consid-
ered as negligible. The deviations from the pure HS phase
diagram in Fig. 1(b) are quite unexpected given the very
“small” addition to the HS potential in model(1) (recall here
the very low change of the second virial coefficient). The
interesting features observed in the upper part of the diagram
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will not be discussed here. Some caution is indeed required
here since the accuracy of the RHNCfeff has not been tested
in this region of relatively highrs

* [see Fig. 6(a) in the Ap-
pendix]. For rs

* ø0.65, one observes first that the metastable
FF transition found forrs

* ù0.55 with the HS mixture[6,15]
is removed by the attractive tail. Furthermore, a significant
extension of the fluid phase is again observed, although it is
less important than for model(2) in the range 0ørs

* ø0.6.
While the broadening of the FS coexistence domain starts for
a value ofrs

* that is rather close to that of hard spheres, the
crystallization line strongly departs from that model whenrs

*

increases(below k* =40, no broadening is observed). Above
rs

* <0.5, the slope of the crystallization line reverses, leading
to a reentrant fluid phase. In this region, the fluid phase may
be stable even up to greater values ofhb than for model(2).
For the melting line, no significant change is observed for
rs

* ø0.65.
Then, while one would have expected the phase behavior

of model(1) to closely resemble that of hard spheres, quali-
tative differences are actually observed as with model(2).
Recall that the latter corresponds to much greater contribu-
tions of the attractions(expressed, for instance, by the sec-
ond virial coefficient).

IV. INTERPRETATION

To analyze these results, it is first useful to recall the HS
scenario: in that case, the main features of the phase diagram
in the srs

* ,hbcd plane are closely related to the depth and the
range of the well shown near contact by the depletion poten-
tial fdep.

Indeed, the rapid increase offdepsDbd (Figs. 3 and 4) with
rs

* and the simultaneous sharpening of the well leads forrs
*

ù0.2 (whenq=10) to a separation of the big colloids fluid
into a dilute vapor governed by entropy and a close-packed
solid governed by energy[6,15] as in simple fluids with
short-range attraction. The close-packed solid is of course
favored by the large value offdepsDbd. In this state indeed,
the energy per particle is roughlyE<1/2zfdepsDbd, z=12
being the number of nearest neighbors. The rapid increase of
fdepsDbd with rs

* is then reflected by the onset of a sharp

minimum in the solid branch of the free-energy curveFs [see
Fig. 5(a)]. As rs

* increases, its depth becomes very important
with respect to the variations of the free energy occurring at
lower density. Indeed, states with intermediate density do not
take advantage of the attractive well, which is too narrow.
The common tangent construction is thus possible only be-

FIG. 3. Potential of mean forcefeff /kBT for model (1) with
small colloid densityrs

* =0.6. From top to bottom at contact:k*

=40, 60, and 100(line =HS).
FIG. 4. Influence of the small colloid–big colloid Yukawa tail on

the contact value of the effective potential in model(1). From top to
bottom:k* =40, 60, and 100(line =HS).

FIG. 5. Reduced free energyf* =Db
3F /kbT V for HS (a) and for

model (1) with k* =100 (b). F is the EOCF free energy. Line,rs
*

=0.32; dashes,rs
* =0.5; dots,(a) rs

* =0.7. Inset in(a): Influence of
the long-range part of the HS depletion potential on the free energy
of the HS solid. Line, full RHNC depletion potential. Dots, same
potential truncated atr =Db+Ds.

WHEN MIXTURES OF HARD-SPHERE-LIKE COLLOIDS… PHYSICAL REVIEW E 70, 041409(2004)

041409-5



tween densities corresponding to a very dilute gas and a
close-packed solid. The FS coexistence domain widens then
very quickly with rs

* . The effect of the residual tails is pre-
cisely to break this scenario that is essentially due to the
“singularity” of the HS depletion well. The minimum of the
solid free energy is now shifted[Fig. 5(b)] roughly by DF
=6NbDfsDbd, whereDf=feff−fdep (this perturbative view
is valid near close packing[26]). As Df.0, one hasDF.0.
For the “small” interactions considered here, however, one
might have expected this contribution to be dominated by
fdep, leading thus to moderate shifts of the transition lines.
On the contrary, when comparingfeff to fdep (see Figs. 3
and 4), the weight ofDf is found to increase strongly with
rs

* . Above rs
* <0.5, this eventually leads to an inversion in

the variationfeffsDbd, which is the direct origin of the reen-
trance observed in the phase diagram. In addition, the re-
moval of the FF metastable transition line is also a conse-
quence of the strong reduction of the depletion well, the
energy gain corresponding to a liquid density being then in-
sufficient.

We emphasize here that it is actually the sharpness of the
depletion well that determines the main features of the HS
mixture phase diagram. On the contrary, this phase diagram
does not seem to be significantly affected by the longer-range
oscillatory part,fdepsr ùDb+Dsd: indeed, the phase diagram
of Fig. 1(a) computed from the full RHNC depletion poten-
tial is very close to that obtained in Ref.[15] with the poten-
tial of Götzelmannet al. [34], which is truncated atr =Db
+Ds (the EOCF free energy was computed in the same way).
This striking difference between the respective effects of the
depletion well and the longer-range oscillatory part may be
understood by recalling that, in the close packing solid de-
scribed above, the internal energy is determined essentially
by fdepsDbd fE<1/2zfdepsDbdg and not by fdepsr ùDb

+Dsd. This is illustrated in the inset of Fig. 5(a) that shows,
for rs

* =0.5, the very small effect on the minimumFs of trun-
cating the HS depletion potential beyondDb+Ds. Of course,
the dilute gas is itself weakly affected by truncation of the
interaction potential. Hence, the hard-sphere mixture phase
diagram is very sensitive to those “details” of the depletion
potential that concern the well at contact but not to its long-
range part.

Figure 1(b) illustrates then the modifications—at the
qualitative level—of the phase behavior that may arise from
residual non-HS heteroattractions. We have checked that
adding a tail to the interaction between the small colloids
induces also effects that increase withrs

* . Thus, although the
phase diagram shown in Fig. 1(b) is specific to model(1),
strong deviations from the HS scenario can be expected in
general in systems usually classified as HS-like. In this re-
spect, experimental phase diagrams of model mixtures of
sterically stabilized silica particles have been recently re-
ported[27]. For the system having typical characteristics of
an “HS-like” situation (see above), significant deviations
from the HS fluid phase boundary were found for the higher
values of the small particles density. Our present results sug-
gest similar trends that we plan to examine in more detail in
the future. Finally, we note that our conclusions do not cor-
roborate the conjectures made in Ref.[19]. The authors ana-

lyzed there the effect of small nonadditivity on the effective
potential and the associated second virial coefficient. They
argued that the deviations from the additive HS mixture
should hardly be observable at the level of the phase dia-
gram, due to the uncertainty in the definition of the colloids
packing fraction. This reasoning assumes that the modifica-
tions due to residual interactions should be purely quantita-
tive. On the contrary, our present results suggest qualitative
changes in the phase behavior with respect to additive hard
spheres.

V. CONCLUSION

The results presented in this paper show that the com-
monly admitted view according to which mixtures of the
so-called “hard-sphere-like” colloids may safely be modeled
as hard sphere mixtures is disputable. A first analysis based
on the sizes of the particles would indeed have considered
residual non-hard-sphere interactions existing in these sus-
pensions as irrelevant “decorations” of the hard spheres. On

FIG. 6. (a) Potential of mean force for a mixture withq=10 and
rs

* =0.585. RHNC, curves; simulation, symbols; HS, line and full
squares(see also[35]); Yukawa tail withk* =20 , dashes and open
squares.(b) Mean force for the Yukawa tail withk* =20. Symbols,
simulation; full circles,FHS

* ; empty circles,Fattr
* ; squares, total force

F* =FHS
* +Fattr

* . The dashed lines connecting the simulation points
are guides to the eyes. Line, RHNC total force.
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the contrary, the situations considered here provide clear evi-
dence that such interactions may lead to qualitative changes
with respect to hard spheres in the phase diagram. Previous
studies have underlined the natural insufficiency of the HS
scenario in the context of pure solvent–sterically stabilized
solute systems. This was explained by the fact that the vari-
ous non-HS interactions(e.g., dispersion forces) have ranges
comparable with the solvent diameter. This work raises now
the issue of the extreme sensitivity of the HS depletion
scheme with respect to small departures from the pure hard-
sphere interaction. This scenario is indeed so tightly linked to
the singularity of the hard-core potential that “decorated”
hard colloids behave quite differently from ideally hard ones.
Although this sensitivity to “details” in the interactions raises
the question of the feasibility of quantitative calculations for
real systems, its observation should also stimulate further
studies with the aim of determining more precisely the pa-
rameters that are actually relevant in these systems. This is-
sue is of practical relevance, since the effective interactions
in colloidal systems can be controlled to some extent. In
mixtures containing two colloidal species with different ra-
dii, it is conceivable that the non-hard-sphere interactions—
for example between unlike species as discussed above—
might also be tuned by acting on the chemical composition
or the structure of the colloids surface layers(e.g., [27]).
Progress in this direction might provide practical ways to
control the thermodynamics of these complex systems.

APPENDIX: RHNC POTENTIAL OF MEAN FORCE
VERSUS SIMULATION

In order to check the accuracy, for the short-range inter-
actions of this study, of the PMF computed by the method

introduced in Ref.[20] and outlined in Sec. II, we performed
Monte Carlo simulations. As detailed in Ref.[17], we ob-
tained feff following the method of Dickmanet al. [36],
whose direct output is the mean force between two fixed big
particles:

Fsrd =Ko
1

N1

cosuL
contact

+Ko
1

N1 ] usbsud
] u

cosuL .

Figure 6(a) showsfeff obtained by numerically integrating
the mean force fork* =20 (the simulations become increas-
ingly difficult as the range of the interaction decreases). The
uncertainty infeffsrd obtained by integrating the MC force
sums the uncertainty on the force over all the integration
points [shown by symbols in Fig. 6(b)] beyondr. The main
source of uncertainty in the force lies now in the extrapola-
tion to r =Dsbof the HS contribution(first term in brackets).
There is no problem with the second term. In the example
shown below, the reduced force at contactF* =FDs/kBT=
−15 results from a HS contribution estimated toFHS

* <−60
and the tail contributionFattr

* <45. The final uncertainty on
feff from simulation is thus difficult to asses, as are the dis-
crepancies that are visible near contact in Fig. 6(a) between
RHNC and simulation. Nevertheless, the deviationDf
=feff−fdep is well reproduced (4.6 kBT and <4.3 kBT,
respectively).
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